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Abstract 
To support the sharing and reuse of formally represented knowledge among AI systems, it is 
useful to define the common vocabulary in which shared knowledge is represented.  A 
specification of a representational vocabulary for a shared domain of discourse — definitions of 
classes, relations, functions, and other objects — is called an ontology.  This paper describes a 
mechanism for defining ontologies that are portable over representation systems.  Definitions 
written in a standard format for predicate calculus are translated by a system called Ontolingua 
into specialized representations, including frame-based systems as well as relational languages.  
This allows researchers to share and reuse ontologies, while retaining the computational benefits 
of specialized implementations. 
 We discuss how the translation approach to portability addresses several technical problems.  
One problem is how to accommodate the stylistic and organizational differences among 
representations while preserving declarative content.  Another is how to translate from a very 
expressive language into restricted languages, remaining system-independent while preserving 
the computational efficiency of implemented systems.  We describe how these problems are 
addressed by basing Ontolingua itself on an ontology of domain-independent, representational 
idioms. 

1. Introduction 

A body of formally represented knowledge is based on a conceptualization: the objects, 
concepts, and other entities that are presumed to exist in some area of interest and the 
relationships that hold them (Genesereth & Nilsson, 1987).  A conceptualization is an 
abstract, simplified view of the world that we wish to represent for some purpose.  
Every knowledge base, knowledge-based system, or knowledge-level agent is 
committed to some conceptualization, explicitly or implicitly.   

An ontology is an explicit specification of a conceptualization.  The term is borrowed 
from philosophy, where an ontology is a systematic account of Existence.  For 
knowledge-based systems, what “exists” is exactly that which can be represented.  

  



When the knowledge of a domain is represented in a declarative formalism, the set of 
objects that can be represented is called the universe of discourse.  This set of objects, 
and the describable relationships among them, are reflected in the representational 
vocabulary  with which a knowledge-based program represents knowledge.  Thus, we 
can describe the ontology of a program by defining a set of representational terms.  In 
such an ontology, definitions associate the names of entities in the universe of discourse 
(e.g., classes, relations, functions, or other objects) with human-readable text describing 
what the names are meant to denote, and formal axioms that constrain the 
interpretation and well-formed use of these terms. 

This paper addresses the problem of portability for ontologies.  Portability is a 
problem because the parties to a common ontology may use different representation 
languages and systems.  Ideally, shared terms should be defined at the knowledge level, 
independent of specific representation languages.  Of course, definitions need to be 
couched in some common formalism if they are to be shareable by knowledge-based 
applications.  However, it is not realistic or desirable to require that those applications 
be implemented in a common representation language or system.  This is because 
different applications require different kinds of reasoning services, and special-purpose 
languages to support them.  Thus, the portability problem for ontologies is to support 
common ontologies over multiple representation systems. 

We describe a translation approach to the portability problem for ontologies.  In a 
translation approach, ontologies are specified in a standard, system-independent form 
and translated into specific representation languages.  In Section 3 we will describe 
Ontolingua, an implemented system for translating ontologies from a declarative, 
predicate-calculus language into a variety of representation systems.  In Section 4 we 
discuss the strengths and limitations of the approach.  But first, we define the notion of 
a shared ontology and describe the role of ontologies for sharing knowledge among AI 
systems. 

2. Ontologies and knowledge sharing 

Knowledge-based systems and services are expensive to build, test, and maintain.  A 
software engineering methodology based on formal specifications of shared resources, 
reusable components, and standard services is needed.  We believe that specifications of 
shared vocabulary can play an important role in such a methodology. 

Several technical problems stand in the way of shared, reusable knowledge-based 
software.  Like conventional applications, knowledge-based systems are based on 
heterogeneous hardware platforms, programming languages, and network protocols.  
However, knowledge-based systems pose special requirements for interoperability.  
Such systems operate on and communicate using statements in a formal knowledge 
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representation.  They ask queries and give answers.  They take “background 
knowledge” as an input.  And as agents in a distributed AI environment, they negotiate 
and exchange knowledge.  For such knowledge-level communication, we need 
conventions at three levels: representation language format, agent communication 
protocol, and specification of the content of shared knowledge.  Proposals for standard 
knowledge representation formats (Fulton, 1992; Genesereth & Fikes, 1992; Morik, 
Causse, & Boswell, 1991; Spiby, 1991) and agent communication languages (Finin et al., 
1992) are independent of the content of knowledge being exchanged or communicated.  
Ontologies can be used for conventions of the third kind: content-specific specifications 
(Gruber, 1991). 

Current research is exploring the use of formal ontologies for specifying content-
specific agreements for a variety of knowledge-sharing activities (Allen & Lehrer, 1992; 
Bradshaw, Holm, & Boose, 1992; Cutkosky et al., 1993; Fikes, Cutkosky, Gruber, & van 
Baalen, 1991; Genesereth, 1992; Gruber, Tenenbaum, & Weber, 1992; Neches et al., 1991; 
Patil et al., 1992; Walther, Eriksson, & Musen, 1992).  A long-term objective of such 
work is to enable libraries of reusable knowledge components and knowledge-based 
services that can be invoked over networks.  

Consider the problem of reusing a knowledge-based planning program.  Such a 
program takes descriptions of objects, events, resources, and constraints, and produces 
plans that assign resources and times to objects and events.  Although it may use 
general planning algorithms, like all knowledge-based systems the planner depends on 
a custom knowledge base (sometimes called a “domain theory” or “background 
knowledge”) to get the job done.  The knowledge base may contain some knowledge 
generic to the planning task, and some that describes the domain situations in which the 
planner is to run. 

If one wished to use the planning system, one would need to adapt an existing 
knowledge base to a new application domain, or build one from scratch.  This requires, 
at a minimum, a formalism that enables a human user to represent the knowledge so 
that the program can apply it.  Furthermore, the developer needs to know the kinds of 
information given in inputs and returned as outputs, and the kinds of domain 
knowledge that is needed by the planner to perform its task. If the planning program 
were offered as a service that could be invoked over the network, or if a large planning 
problem were subcontracted out to several cooperating planning agents, then one 
would need an agreement about the topics of conversation that agents are expected to 
understand. 

Underlying these content-specific agreements are ontological commitments: 
agreements about the objects and relations being talked about among agents, at 
software module interfaces, or in knowledge bases.  For instance, developers and users 
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of the planning system might agree on the definitions of objects that “provide,” 
“require,” and “produce” resources; time that comes in “points” and “durations”; 
resources that are “allocated,” “deallocated,” and “produced” in “events”; and plans 
consisting of “state descriptions”, “preferences” over states, and “effects” prescribed by 
“causal rules”, events, or “operators.”1 

Ideally, we would like to be able to specify ontological commitments at the 
knowledge level (Newell, 1982).  We say that an agent commits to a knowledge-level 
specification if its observable actions are logically consistent with the specification.  This 
means that the specification format is independent of the internal (symbol-level) 
representation of the agent.  With a bit of anthropomorphic license, the knowledge-level 
perspective can be applied to programs and knowledge bases.  The “actions” of 
programs are “observed” through inputs and outputs, and specifications about their 
behavior may be given in terms of the formal arguments of a functional interface.  
Similarly, knowledge bases can be observed through a tell and ask functional interface 
(Levesque, 1984), where a client interacts with a knowledge base by making logical 
assertions (tell) posing queries (ask).  The agents doing the telling and asking are 
viewed as black boxes. 

In the context of multiple agents (including programs and knowledge bases), a 
common ontology can serve as a knowledge-level specification of the ontological 
commitments of a set of participating agents.  A common ontology defines the 
vocabulary with which queries and assertions are exchanged among agents.  For 
example, the words in the planning ontology are technical terms that govern the form of 
inputs and the interpretation of outputs.  The definitions tell the user of a planning 
system what information must be given about an “event” or “resource” in order for the 
planner to be able to use the information.  Each program must commit to the semantics 
of the terms in the common ontology, including axioms about the properties of objects 
and how they are related.2  However, there need be no commitment to the form or 
content of knowledge internal to the agent.   

The axiomatization in an ontology need not be a complete functional specification 
of the behavior of an agent.  Common ontologies typically specify only some of the 
formal constraints that hold over objects in the input and output in the domain of 
discourse of a set of agents. They do not say which queries an agent is guaranteed to 
answer.  Thus, a commitment to a common ontology is a guarantee of consistency, but 
not completeness, with respect to queries and assertions using the vocabulary defined 

                                                 
1The terms is this example are taken from a common ontology defined for the DARPA/Rome Planning 
and Scheduling Initiative (Allen & Lehrer, 1992) . 
2Of course, it is the programmers of those systems who commit to using terms consistently, and “share 
the meanings” of the terms. 
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in the ontology.  Specifying the inferential capabilities of agents is an open research 
problem. 

Definitions in common ontologies are like the global type declarations in a 
conventional software library, and the ontological commitments are specified with type 
restrictions over the inputs and outputs of program modules.  Formal argument 
restrictions can be checked mechanically by compilers, to help ensure that calling 
procedures pass legal data to called procedures.  Similarly, sentences in a tell-and-ask 
exchange can be checked for logical consistency with the definitions in ontologies.  Just 
as the formal argument list hides the internal workings of a procedure from its 
environment, a common ontology allows one to interact with a knowledge-based 
program without committing to its internal encoding of knowledge.   

Ontologies are also like conceptual schemata in database systems.  A conceptual 
schema provides a logical description of shared data, allowing application programs 
and databases to interoperate without having to share data structures.  While a 
conceptual schema defines relations on Data, an ontology defines terms which with to 
represent Knowledge.  For present purposes, one can think of Data as that expressible in 
ground atomic facts and Knowledge as that expressible in logical sentences with 
existentially and universally quantified variables.  An ontology defines the vocabulary 
used to compose complex expressions such as those used to describe resource 
constraints in a planning problem.  From a finite, well-defined vocabulary one can 
compose a large number of coherent sentences.  That is one reason why vocabulary, 
rather than form, is the focus of specifications of ontological commitments. 

There are many aspects of the knowledge sharing problem that are not addressed 
by common ontologies.  Questions not addressed include how groups of people can 
reach consensus on common conceptualizations, and how terms can be defined outside 
their context of use.  The utility of common ontologies as a sharing mechanism is a 
hypothesis, the subject of collaborative studies (Neches et al., 1991; Patil et al., 1992).  
Ontolingua is a tool to support such research. 

3. Ontolingua: A system for portable ontologies 

Ontolingua is a system for describing ontologies in a form that is compatible with 
multiple representation languages.  It provides forms for defining classes, relations, 
functions, objects, and theories.  It translates definitions written in a standard, 
declarative language into the forms that are input to a variety of  implemented 
representation systems.  Ontologies written in Ontolingua can thereby be shared by 
multiple users and research  groups using their own favorite representation systems, 
and can be ported from system to system.   Figure 1 shows some of the possible 
applications of a single ontology translated into several systems. 
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The syntax and semantics of Ontolingua definitions are based on a notation and 
semantics for an extended version of first-order predicate calculus called Knowledge 
Interchange Format (KIF) (Genesereth & Fikes, 1992).  KIF is intended as a language for 
the publication and communication of knowledge.  It is intended to make the 
epistemological-level (McCarthy & Hayes, 1969) content of a knowledge base clear to the 
reader, but not to support automated reasoning in that form.  It is very expressive, 
designed to accommodate the state of the art in knowledge representation.  But it is not 
an implemented representation system. 

Ontolingua translates definitions written in KIF into forms appropriate to 
implemented representation systems, which typically impose a restricted syntax and 
support limited reasoning over a restricted subset of full first order logic.  Currently, 
Ontolingua can translate into Loom (MacGregor, 1991) (a KL-ONE style system), Epikit 
(Genesereth, 1990) (a predicate calculus language descended from MRS), Algernon3 
(Crawford & Kuipers, 1989) (a frame system based on Access Limited Logic), a generic 
class and slot syntax (for easy translations into simple frame systems), and pure KIF 
(i.e., in a canonical form, to facilitate further translation into other languages).  It would 
be relatively simple to write translators into CycL (Lenat & Guha, 1990), KEE (Fikes & 
Kehler, 1985), or EXPRESS (Spiby, 1991).  Ontolingua can parse arbitrary KIF sentences, 
and recognizes many common representation idioms.  However, not all KIF sentences 
can be translated into all target representation systems.  When definitions contain 
sentences that cannot be translated into a given implementation, Ontolingua informs 
the user and continues.   

The set of idioms that Ontolingua can recognize and translate is defined in an 
ontology, called the Frame Ontology.  The Frame Ontology specifies, in a declarative 
form, the representation primitives that are often supported with special-purpose 
syntax and code in object-centered representation systems (e.g., classes, instances, slot 
constraints, etc.).  We discuss the Frame Ontology in Section 3.6. 

                                                 
3The original Ontolingua-to-Algernon translator was implemented by Juan Carlos Martinez at MCC.  An 
extended, updated translator is under development by James Crawford and the author. 

6 



LOOM
"T-box" ontology

"Off the shelf"
Ontology

Ontolingua

LOOM
Knowledge Base

Epikit
Axioms

Epikit
Ground facts

Express
Information Model

PDES/STEP
Product
Description
(conventional
 database)

Canonical
KIF definitions

CLOS-based
Objects

Public example
knowledge base
(KIF sentences)

 
Figure 1: Translating from a common ontology into several 
applications.  The same ontology can be used for different purposes in 
different systems.  Loom can be used during the conceptual design of 
the ontology, helping with classification.  It can also be used to 
manage a knowledge base of facts about objects.  Epikit is useful for 
exploratory reasoning; it provides a suite of powerful deductive 
engines.  Express is the standard language for describing PDES 
information models, which are logical database designs for sharable 
product description data.  Other public-domain knowledge bases, 
such as mode libraries and experimental data sets, can be shared via a 
common ontology in a canonical form of KIF definitions. 

3.1 A brief introduction to the syntax and semantics 

Ontolingua definitions are written in natural language and KIF sentences.  The natural 
language text is not parsed or translated, but is passed on to those systems that have a 
place for documentation (surprisingly, many representation systems do not!).  The 
technical task is to translate declarative sentences, which are axioms that constrain the 
meaning of the defined terms.  

KIF provides a Lisp-like notation for writing the axioms in Ontolingua definitions; 
it is a case-insensitive, prefix syntax for predicate calculus with functional terms and 
equality.  Objects are denoted by object constants (Lisp atoms), or term expressions, 
which are constructed from lists whose first element is a function constant.  Sentences 
are formed from lists whose first element is a relation constant and remaining elements 
are terms, or by logical operations over such sentences.  Individual variables that may 
be universally or existentially quantified are marked with the '?' prefix.  There are 
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operators for conjunction, disjunction, implication, and negation.  For example, the 
following is a KIF sentence that says, “All writers are misunderstood by some reader.” 
      (forall ?W 
         (=> (writer ?W) 
             (exists (?R ?D) 
                (and (reader ?R) 
                     (document ?D) 
                     (writes ?W ?D) 
                     (reads ?R ?D) 
                     (not (understands ?R ?D)))) 

The symbol writer is a relation constant, and the sentence (writer ?W) says that ?W is a 
writer.  => is material implication.  ?W is a universally quantified variable, and ?R and ?D 
are existentially quantified.  Reads is a binary relation, and (reads ?R ?D) says that ?R 
reads the document ?D.  Quantification is not typed or sorted, although in practice the 
types of quantified variables such as ?W and ?D are constrained with unary predicates 
such as writer and document. 

The KIF specification (Genesereth & Fikes, 1992) provides model-theoretic 
semantics for the language and an axiomatization of the primitive object types such as 
sets, lists, relations, and functions.  Sets are defined using a standard set theory.  Lists 
are finite sequences of objects.  There is no distinction among linked lists, arrays, or any 
other encoding of sequences, since KIF is a declarative specification language and not 
an implementation.  Relations are defined as sets of tuples, where each tuple is a list of 
objects.  Functions are a special case of relations, in which the last object in each tuple is 
unique given the preceding objects.   A function of N arguments is a relation of N+1 
arguments in which the value of the last argument is a function of the first N 
arguments. 

Ontolingua definitions are Lisp-style forms that associate a symbol with an 
argument list, a documentation string, and a set of KIF sentences labeled by keywords.  
An Ontolingua ontology is made up of definitions of classes, relations, functions, 
distinguished objects, and axioms that relate these terms. 

A relation is defined with a form like the following: 
(define-relation CONNECTS (?comp1 ?comp2) 

"The most general binary connection relation between components.   
Connected components cannot be subparts of each other." 
:def (and (component ?comp1) 
          (component ?comp2) 
          (not (subpart-of ?comp1 ?comp2)) 
          (not (subpart-of ?comp2 ?comp1))) 

The arguments ?comp1 and ?comp2 are universally quantified variables ranging over the 
items in the tuples of the relation.  This example is a binary relation, so each tuple in the 
relation has two items. Relations of greater arity can also be defined.  The sentence after 
the :def keyword is a KIF sentence stating logical constraints over the arguments.  

8 



Constraints on the value of the first argument of a binary relation are effectively domain 
restrictions, and those on the second argument of a binary relation are range 
restrictions.  There may also be complex expressions stating relationships among the 
arguments to a relation.  The :def constraints are necessary conditions, which must hold 
if the relation holds over some arguments.  It is also possible to state sufficient 
conditions, or any combination.  In textbook notation for predicate calculus, the form 
above means: 

∀x,y  connects(x,y) ⇒ component(x) ∧ component(y) ∧  
 ¬ subpart-of(x,y) ∧ ¬ subpart-of(y,x). 

If the :iff-def keyword is used instead of :def, the definition becomes necessary and 
sufficient.  That is: 

∀x,y  connects(x,y) ⇔ component(x) ∧ component(y) ∧  
 ¬ subpart-of(x,y) ∧ ¬ subpart-of(y,x). 

A class is defined with a similar form, where there is exactly one argument, called the 
instance variable.  In Ontolingua, classes are treated as unary relations to help unify 
object- and relation-centered representation styles. 
(define-class CONNECTION (?connection) 

"A connection is a special case of module where there are no internal variables.  They can be thought of as 
conduits for transfer of energy/matter/information among modules.  They also can be viewed as an 
encapsulation of intermodule constraints.  Connections are typed by the number and type of their ports." 
 :def (and (module ?connection) 
           (not (exists ?variable 
                  (internal-state-variables ?connection ?variable))))) 

The :def sentence describes those things that must be true of instances of the class, that 
is, necessary constraints.  Unary relations applied to the instance variable specify 
superclasses of the class being defined.  For example, connection is a subclass of module 
by definition, because every connection ?connection must also be a module.  Other 
properties of instances can be stated using KIF sentences mentioning the instance 
variable.  The logical meaning of the class definition above is 

∀x  [connection(x) ⇒ module(x) ∧ ¬ ∃y  internal-state-variables(x,y) ] 

A function is defined like a relation, with a slight variation in syntax, moving the 
final argument outside of the argument list:  
(define-function SQUARED (?n) :-> ?value 

"The squared of a number is the product of it times itself." 
:def (and (number ?n) 
          (nonnegative-number ?value)) 
:lambda-body (* ?n ?n)) 

As in definitions of relations, the arguments to a function are constrained with 
necessary conditions following the :def keyword.  The function is only defined on 
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arguments that satisfy these domain constraints; in this case, the condition (number ?n) 
means the function is only defined for numbers.4  A restriction on the range of the 
function is specified with a sentence constraining the value variable after the :-> 
keyword (i.e., ?value is a nonnegative number).  The body of the define-function form 
is the same as the define-relation form, except it also allows a :lambda-body to be 
given.  A lambda-body is a KIF term expression that denotes the value of the function in 
terms of its arguments.  In the example, * is a function and the lambda-body is a term 
that denotes the product of ?n and itself.  Since definitions are purely declarative, the 
functions in a lambda body are “side-effect free.”  The logical meaning of the example 
function definition is 

∀x,y  [y = squared(x)] ⇒ number(x) ∧ nonnegative-number(y) 
∀x squared(x) = x2 

Functions need not be defined on all objects.  When a function is applied to argument 
on which it is undefined, the term expression denotes a special KIF object called bottom 
(⊥).  For example, if the function constant * is defined on all numbers, then the squared 
function could be described as: 

squared(x) =
2x ifnumber(x)

⊥ otherwise
    

Finally, it is possible to define distinguished individuals in an ontology.  Although 
Ontolingua is intended for defining vocabulary, rather than storing the ground facts of 
a knowledge base, sometimes the name of a particular constant is part of the 
vocabulary.  For example: 
(define-instance ZERO (number) 

"Zero is the identity element for addition." 
:axiom-def (forall ?x  
              (=> (number ?x) 
                  (and (= (+ ?x ZERO) ?x) (= (+ ZERO ?x) ?x))) 
:= 0) 

This form defines the object constant zero.  The list (number) says that zero is an 
instance of the class number.  An object can be an instance of more than one class.  The 
sentence labeled with :axiom-def is a stand alone axiom constraining the object 
constant.  After the := keyword is a KIF term expression that denotes the object being 
defined.  It is like the :lambda-body expression for functions, but without free variables. 

Details on the language and software are documented in a longer report (Gruber, 
1992) and the documentation distributed with the software. 

                                                 
4The constraint (number ?n) does not say that the function is defined for all numbers, only that when it 
is defined for some argument ?n, that ?n is a number. 

10 



3.2 An example definition 

Consider an ontology for bibliographic information.5  The purpose of a bibliography 
ontology is to support knowledge sharing tasks such as exchanging bibliographic data 
among databases, integrating bibliographic databases with other databases (e.g., 
address books, company directories), linking citations across hyperdocument 
boundaries, and providing network-based services for bibliographic data processing.  
The domain of discourse of these tasks includes documents, authors, publishers, dates, 
places, and the references that occur in documents and card catalogs.  In this ontology, 
authors are defined as follows. 
(define-class AUTHOR (?author) 

"An author is a person who writes things.  An author must have created at least one document.   
In this ontology, an author is known by his or her real name." 
:def (and (person ?author) 
          (= (value-cardinality ?author AUTHOR.NAME) 1) 
          (value-type ?author AUTHOR.NAME biblio-name) 
          (>= (value-cardinality ?author AUTHOR.DOCUMENTS) 1) 
          (<=> (author.name ?author ?name) 
               (person.name ?author ?name)))) 

This form defines the term author, which denotes a class.6  Individual authors such as 
Marvin Minsky are instances of the class.  The :def sentence gives necessary conditions 
on class membership.  The first conjunct of the sentence, (person ?author), says that all 
authors must also be persons.  The second conjunct says that authors must have exactly 
one associated name, given by the relation author.name.  This means that the relation 
author.name maps every instance of the class author to some name, with only one name 
per author.  The third conjunct specifies the type restriction that the value of the 
author.name relation applied to instances of author must be an instance of the class 
biblio-name.  The fourth conjunct says that there must be some document(s) associated 
with every author by the relation author.documents.  The fourth conjunct specifies that 
the author.name and the person.name of an author are the same.  This constraint 
explicitly rules out calling authors by pen names.  

3.3 The ontological commitments implied by definitions 

What is the nature of the ontological commitments specified by such definitions?  
Agents that commit to the ontology agree to use the terminology in a manner that is 

                                                 
5The examples here are only fragments of larger ontologies, which are available as examples with the 
Ontolingua software.  Complete ontologies are coherent theories that constitute publications in 
themselves.  See Appendix 1 for excerpts from an ontology of relevance to knowledge acquisition 
community. 
6The relations author.name and author.documents can be viewed as slots on instances of the class 
author.  The relations value-cardinality and value-type, defined in the Frame Ontology, are 
used to state slot constraints (see Section 3.6 and Appendix 2). 
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consistent with the axioms and documentation strings.  One can take advantage of such 
a commitment when using knowledge services.  For instance, imagine that a program 
asks for the author of some document, perhaps with this query: 
 (ask ?x (author.documents ?x society-of-mind)) 

The database service might return the identifier author-423455 as a binding for ?x.  
Then the asking program could request the name of the author with this query: 
 (ask ?name (author.name author-423455 ?name)) 

From the definition of author, the asking program can now count on the name 
returned by the author.name query to be the same as the name of the person Marvin 
Minsky.  It could then use that name when querying other knowledge bases about 
famous people, only some of whom are authors. 

An agent that commits to the bibliography ontology does not necessarily have to 
store a database of authors, or to be able to answer any query about authors.  The 
ontological commitments are still useful under partial knowledge. Consider the case 
where there are several bibliography knowledge servers on the network that are 
committed to the bibliography ontology, each with incomplete knowledge.  Imagine we 
ask one knowledge server for the books by Marvin Minsky, and it replies that it isn't 
aware of any.  That does not mean that there are no such books, of course.  We can 
assume that there must be some works written by Minsky, since he was called an 
author.  We can then query other knowledge servers, until we find one that knows the 
answer.  Similarly, if we asked for the name of an author in a distributed fashion and 
got an answer, we know from the definition that there is at most one name per author, 
so we can stop asking other knowledge servers for his name. 

3.4 Translation into representation systems 

The definition of the author class specifies constraints that are typical of descriptions in 
many systems.  Let us look at how it translates into different representation languages. 

In Epikit, a predicate calculus language, the author definition translates to 
 (=> (author $author) 
     (person $author)) 
 (=> (author $author) 
     (exists $y (author.name $author $y) (biblio-name $y))) 
 (=> (author $author) 
     (=> (author.name $author $y) (author.name $author $y2) 
         (= $y $y2))) 
 (=> (author $author) 
     (exists $y (author.documents $author $y))) 
 (=> (author $author) 
     (<=> (author.name $author $name) 
          (person.name $author $name))) 

12 



Epikit is based on an early version of KIF; it is a prefix-form predicate calculus with 
equality and functional term expressions.   Epikit does not distinguish definitions from 
any other axioms.  Thus, the necessary conditions of the Ontolingua definition get 
turned into implications.  Epikit also does not support reasoning about relations as 
objects.  In the Ontolingua definition some of the relations take classes and other 
relations as arguments.   For example, the relation value-type took the binary-relation 
author.name and the class biblio-name as arguments.    Relations that take other 
relations as arguments are called second-order relations (we will say more about them in 
Section 3.6).  To translate such statements into pure first-order systems such as Epikit, 
Ontolingua recognizes the second-order relations and instantiates axiom schemata for 
them.  For example,  
 (>= (value-cardinality ?author author.documents) 1) 

becomes 
 (exists $y (author.documents $author $y)). 

In Loom, a object-oriented KL-ONE-style language, the author definition translates 
as 
(define-concept author 
  :is (:and :primitive 
             person 
             (:the author.name biblio-name) 
             (:at-least 1 author.documents) 
             (:same-as author.name person.name))) 

The Loom translation looks similar to the Ontolingua form, except that there are no free 
variables.  The second-order relations such as value-type and value-cardinality were 
fashioned after the analogous operators in Loom derivatives such as :all and :at-
least.  They capture common constraints that hold between classes and binary relations 
applied to their instances.  However, in Ontolingua, these second-order relations are not 
part of the syntax or primitive operators of the language.  They are just vocabulary—
relations defined in KIF—for specifying portable ontologies and translating among 
Loom-like systems. 

In KEE, an object-oriented, frame-based system, the example would appear like this 
in a frame browser: 
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Unit: AUTHOR 
Comment: "An author is a person who writes things.   
 An author must have created at least one document.   
 In this ontology, an author is known by his or her real name." 
Superclasses: PERSON 
Member Of: CLASSES 
Member slot: AUTHOR.NAME 
  ValueClass: (MEMBER.OF BIBLIO-NAME) 
  Min.Cardinality: 1 
  Max.Cardinality: 1 
Member slot: AUTHOR.DOCUMENTS 
  Min.Cardinality: 1 
Member slot: PERSON.NAME  from Person 

KEE is a distant cousin of Loom, and it also has special syntax for slot constraints 
(e.g., Valueclass, Min.Cardinality).  However, the KEE frame system is less expressive 
than Loom and the logic-based languages.  Consequently, a constraint that would be 
said declaratively in Loom might be implemented with an attached procedure in KEE.  
For instance, the KEE frame browser shows a template for the slot person.name 
“inherited” from the superclass person, but it does not have a constraint language 
capable of expressing the fact that the value of the author.name slot is the same as the 
value of the person.name slot.  To implement this constraint, one would write an 
attached procedure that computes the value of one of the slots from the other if either is 
given a value.  The existence of embedded procedural code in object-oriented systems 
such as KEE is one reason for maintaining ontologies in a more expressive, declarative 
language, and translating into the restricted languages.  The assumption is that it is 
easier to generate procedural code to implement a declarative specification than to infer 
the declarative semantics from a procedure. 

3.5 Translation architecture 

The design of Ontolingua was constrained by three competing requirements: 

• to offer an expressive, declarative, system-independent language in which to write 
definitions 

• to support translation into specialized representations with restricted expressive 
and inferential power 

• to allow for easy extension in expressiveness and target implementations 

It is impossible achieve all three of the requirements completely.  If the source 
language is more expressive than the target languages, then the translation will be 
incomplete.  If one built separate, special-purpose translators for each language, the 
subset of KIF that is handled would depend on the target language.  And each 
additional translator would be as expensive to implement as the first. 
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Ontolingua's design strikes a balance in which translation is complete only for a 
restricted subset of representational idioms, but these are defined independently of any 
target system.  For each of these idioms, Ontolingua code recognizes its expression in KIF 
and transforms it into a canonical form.  The canonical form is an intermediate 
representation that facilitates translation into multiple target languages.  Sentences in 
the canonical form have a predictable format that simplifies pattern matching by 
reducing the number of ways that an equivalent thing can be stated.   

For example, in the author example, the necessary condition 
 :def (... (person ?author) ...) 

is an idiom that is transformed by Ontolingua into the stand alone axiom 
 (subclass-of author person) 

Similarly, the slot equivalence constraint 
 (<=> (author.name ?author ?name) 
      (person.name ?author ?name)) 

is turned into 
 (same-slot-values author author.name person.name). 

In both of these cases, Ontolingua recognized a representational idiom, and 
transformed it into a logically equivalent sentence using a second-order  relation.  A 
second-order relation is a relation that can take other relations (including classes and 
functions) as arguments.  For example, the statement (range relation class) specifies that 
all values of the given binary relation must be an instance of class.  Range is a second-
order relation that is recognized by Ontolingua; it is defined in the Frame Ontology.  
This constraint could be expressed in several equivalent ways in KIF: 

 (=> (relation ?x ?y) (class ?y)) 
 (forall (?x ?y) (=> (relation ?x ?y) (class ?y))) 
 (<= (class ?y) (relation ?x ?y)) 
 (=> (member ?tuple relation) (class (second ?tuple))) 
 ... 

Recognizing idioms and transforming them into canonical form are two of the 
front-end processes that Ontolingua performs when translating.  The canonical form for 
Ontolingua is to put constraints into ground (variable-free) axioms using the Frame 
Ontology vocabulary.  Back-end translators are written to anticipate these forms and 
transform them into output appropriate to specific target systems.  For example, 
translators look for patterns of the form (range symbol) instead of all of the variants 
listed above. Since the front-end Ontolingua processor can recognize and transform the 
common variants, the back-end translators have a finite set of cases to consider. 
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Figure 2:  Translation architecture for Ontolingua.  Instances of common 
representation idioms  are recognized and transformed into a simpler, 
equivalent form using the second-order vocabulary from the Frame 
Ontology.  These and other transformations result in a canonical form, which 
is given to back-end translators that generate system-specific output.  A pure 
KIF output is also available at this stage, to be given to other translators 
developed for KIF, such as KIF-to-Prolog. 

Figure 2 shows the data flow of the translation architecture.  This architecture is 
analogous to a conventional programming language compiler, which parses source into 
an intermediate form that is then given to specialized code generation modules.   
 

3.6 The Frame Ontology 

The choice of supported second-order relations was made to capture common 
knowledge-organization conventions used in object-centered or frame-based 
representations.  The second-order relations recognized by Ontolingua are defined in an 
ontology, called the Frame Ontology.  It contains a complete axiomatization of classes 
and instances, slots and slot constraints, class and relation specialization, relation 
inverses, relation composition, and class partitions.  Each second-order term is defined 
in natural language and KIF axioms.  A current list of the Frame Ontology vocabulary is 
given in Appendix 2.  By no coincidence, these are the constructs that are supported 
with special-purpose syntax and code in object-centered representation systems.  
Together, they constitute a purely declarative representational framework for 
describing hierarchies of classes with slots.  Users of Ontolingua and developers of 
translators can consequently share a well-defined vocabulary and make assumptions 
about its consistent use.   
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The Frame Ontology is carefully designed to allow both relational and object-
centered styles of representation to co-exist (and it is consistent with the built-in 
ontologies in KIF for relations and functions).  The design choices are not arbitrary.  
There are several possible ways to axiomatize classes, for example.  Some systems treat 
them as simple sets; others as unary relations; others as intentional entities or 
descriptions.  The Frame Ontology defines classes to be coextensional with unary 
relations, so that the relational-style (person Fred) is compatible with the object-style 
(instance-of Fred person).  Similarly, slots can be viewed as binary relations, unary 
functions onto sets, projections of relations, or some combination.  The Frame Ontology 
makes a minimal commitment that allows slots to be viewed as binary relations or 
unary functions, and does not commit to distinctions among attributes, properties, and 
slots as local to classes (see (Guarino, 1992; Sowa, 1992)). 

We have already described how the second-order vocabulary can facilitate 
translation by providing a canonical form for representation idioms.  The Frame 
Ontology vocabulary can also be used by ontology writers directly in their definitions, 
as a succinct representation for simple things that can be awkward in pure first-order 
predicate calculus.  For example, in the author definition the relation value-
cardinality was used as follows 
 (= (value-cardinality ?author author.name) 1) 

which could have been stated using this form: 
 (and (exists ?name (author.name ?author ?name)) 
      (forall (?name1 ?name2) 
          (=> (and (author.name ?author ?name1) 
                   (author.name ?author ?name2)) 
              (= ?name1 ?name2)))) 

The same second-order relation is also used in this constraint: 
 (>= (value-cardinality ?author author.documents) 1) 

which might otherwise have been stated using this idiom: 
 (exists ?document (author.documents ?author ?document)). 

Note that second-order relations are not substitutional macros for the idioms.  
Obviously the idioms for these two applications of value cardinality are not expanded 
from the same template.  Compare them to the definition of  value-cardinality as 
given in the Frame Ontology, which uses a set-theoretic axiomatization instead of 
existential quantification. 
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(define-function VALUE-CARDINALITY (?instance ?binary-relation) :-> ?n 
  "The VALUE-CARDINALITY of a binary-relation with respect to a given domain instance is the number of 
range-elements to which the relation maps the domain-element.  For a function (single-valued relation), the 
VALUE-CARDINALITY is 1 on all domain instances for which the function is defined.  It is 0 for those instances 
outside the exact domain of the function."  
  :lambda-body (cardinality (setofall ?y 
                                (holds ?binary-relation ?instance ?y))) 

Using the second-order relations of the Frame Ontology, one can also describe 
properties of classes, functions, and other relations, without mentioning the instance 
arguments or instance variables.  For example, the definition of the class author could 
have been defined using only the second order vocabulary: 
(define-class AUTHOR (?author) 

"An author is a person who writes things.  An author must have created at least one document.   
In this ontology, an author is known by his or her real name." 
:axiom-def (and (subclass-of author person) 
                (slot-value-cardinality author author.name 1) 
                (slot-value-type author author.name biblio-name) 
                (minimum-slot-cardinality author author.documents 1) 
                (same-slot-values author author.name person.name))) 

The :axiom-def label indicates that this is a stand alone axiom with no free variables.  
Sentences in the :axiom-def  mention the constant author rather than the instance 
variable ?author.  The definition above is the canonical form passed on to Ontolingua 
translators.  The relations with “slot” in their names are slot constraints, which appear 
as facets or special syntax some frame systems. 

Independent of Ontolingua, the Frame Ontology can serve as a framework for 
defining representational clichés and idioms.  The same conventions facilitate 
translation into KIF from object-centered systems, offering a canonical form for stating 
things that might be written in several equivalent forms.  With feedback from 
Ontolingua and the knowledge representation community, we expect to add new 
second-order relations to accommodate the expressive needs for defining common 
ontologies.  Fortunately, the cost of adding a new second-order relation is limited to the 
effort required to support that “special case” in each target representation.  Importantly, 
the syntax, operators, and semantics of the shared language need not change.  

4. Discussion 

Ontolingua is not a replacement for a representation system like Algernon or Loom.  
One of the motivations for trying to make ontologies portable over several 
implementations of representation systems, rather than just standardizing on one 
system, is that different systems provide different computational services at different 
costs.  The translation strategy allows one to use some computational services at 
conceptual design time (e.g., terminological classification, general-purpose inference) 
and to use the same ontology for the development of production systems (e.g., 
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translating it into object-oriented class definitions or database schemata).  It is important 
to note that Ontolingua does not support query processing; users call implemented 
systems directly to invoke inference procedures.  This lessens the need to write 
ontologies in a special-purpose language, because many of the compromises made in 
the expressiveness of a representation are made to optimize run-time inference. 

Because it translates into restricted languages, Ontolingua is inherently incomplete 
with respect to the KIF language.  The only way to be truly portable over the specialized 
systems is to take a common-denominator approach, writing definitions using only 
those constructs known to be supported in all of the systems of interest.  The Frame 
Ontology is a compromise: it identifies a set of some common idioms that are supported 
in most of the target systems.  Although it can parse any legal KIF expression, 
Ontolingua is only designed to translate a subset of KIF (which is described in the 
documentation).  For instance, the current implementation is not guaranteed to translate 
sentences using some of the more sophisticated language features of KIF, such as meta-
level operators.  It currently does not support user-defined second-order relations; only 
the terms defined in the Frame Ontology are recognized. 

However, the full, first-order predicate calculus is available to the ontology writer.  
Consequently, incompleteness is a fact of life in the representation translation business. 
When Ontolingua cannot translate a sentence into a target implementation, it issues an 
informative message.  The practical consequence of not translating a sentence could be 
that the target system may be unable to enforce a constraint, or it may have to fall back 
on inefficient theorem proving.  The good news is that target systems can be customized 
or replaced without changing the ontology. 

Ontolingua is a domain-independent translation tool; it does not help with the 
intellectual task of designing ontologies.  Deciding which concepts and relations to 
include, and writing axiomatic definitions, requires knowledge that is not found in 
existing knowledge bases.  Ontologies like the Frame Ontology and the axiomatization 
of set theory in KIF are called representation ontologies.  Representation ontologies 
provide a framework, but do not offer guidance about how to represent the world.  
Content ontologies make claims about how the world (or a conceptualization of it) should 
be described.  Some content ontologies are intended to be comprehensive—to be 
“conceptual coat rack” on which to “hang” more specific ontologies and domain 
knowledge.  Examples of comprehensive content ontologies include Cyc's global 
ontology (Lenat & Guha, 1990; Lenat, Guha, Pittman, Pratt, & Shepherd, 1990), the 
Penman Upper Model (Bateman, Kasper, Moore, & Whitney, 1990) and the Lilog KB 
(Pirlein, 1993).  Whether these ontologies can help in the design of more specialized 
ontologies is an empirical question.  Ontolingua was created to support 
experimentation by making such ontologies accessible as off-the-shelf artifacts. 
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As a representation ontology, the Frame Ontology does specify a conceptualization 
implicit in knowledge bases written in the object-centered style.  Classes, specialization, 
and slot constraints are not built into KIF; they are a convention supported in 
specialized representation-system architectures.  The Frame Ontology defines these 
object-centered concepts in a declarative form that is stylistically compatible with pure 
relation-centered usage.  The vocabulary for these concepts defines what can be 
translated, and offers a succinct form for users to write portable ontologies.  In these 
ways, the Frame Ontology is a specification of the ontological commitments of 
Ontolingua. 
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Appendix 1: An example ontology 

Here is an excerpt from an ontology about configuration design. The ontology defines 
vocabulary that can be used to formally specify a design task, where the task 
specification includes knowledge about an engineering domain as well as customer 
requirements and other constraints.  The ontology was written to support a 
collaborative experiment among knowledge acquisition researchers in the domain of 
elevator design (the domain of the VT system (Marcus, Stout, & McDermott, 1988)).  Each 
participant in the experiment will build a system capable of solving configuration 
design tasks based on documentation of the domain knowledge, and will compare the 
resulting products.  This ontology will support the formal encoding of the domain 
knowledge and problem description that is documented in over 20 pages of prose and 
data (Yost, 1992). 
(define-theory CONFIGURATION-DESIGN  

(frame-ontology physical-quantities scalar-quantities) 
"This is an ontology for describing configuration design tasks: describing components, parameters, 
constraints, and configurations. Like parametric design tasks, a configuration design task is a search for values 
of parameters that satisfy a set of constraints.  In configuration design, however, the set of relevant parameters 
and constraints is a function of the components chosen.  The specification of a particular design task, such as 
the VT task for designing an elevator, is the description of a system component like an elevator, a set of 
constraints on that component (e.g., customer requirements), and a library of background constraints (e.g., 
laws of physics) and available components.  A valid design is a complete description of the system component, 
with values for relevant parameters and choices for subcomponents, that satisfies all the constraints.    The 
definitions in this ontology embody this tight relationship between components, constraints, and parameters.  
Constraints are defined as unary predicates that hold for components.  Parameters are unary functions on 
components.  Components are related to other components through binary subpart relations.") 

(in-theory 'configuration-design) 

(define-class COMPONENT (?x) 
"A component is a primitive module or assembly of primitive modules that participate in a design.  
Components need not correspond to physically whole objects such as standard parts from a parts catalog. 
Components may also represent functional and behavioral abstractions. This ontology only says that 
components are the locus of attributes and constraints.  To say that a component C has-attribute A means that 
there is a function A from C to the value of the attribute. In object-oriented terminology, one can think of A as a 
slot of C,  and calling it an attribute means that it may be mentioned in constraints on C.  Similarly, a 
component C has-subpart S means  the function S maps C to another component which plays the S role in C.  
Subpart slots may identify structural, functional, or similar kinds of relationships among components." 
:def (and (value-type ?x HAS-ATTRIBUTE attribute-slot) 
          (value-type ?x HAS-SUBPART subpart-slot) 
          (value-type ?x HAS-CONSTRAINT constraint) 
          (value-type ?x SATISFIES-CONSTRAINT constraint) 
          (value-cardinality ?x COMPONENT.COST 1) 
          (value-type ?x COMPONENT.COST cost-quantity))) 

(define-relation HAS-ATTRIBUTE (?component ?attribute-slot) 
"A component has an attribute if the attribute value is given by a unary function, called an attribute-
slot, that is defined for that component.  Calling a slot an attribute means that it is a design parameter: it will 
need to be assigned a value and may be mentioned in constraints." 
:def (and (component ?component) 
          (attribute-slot ?attribute-slot) 
          (value-cardinality ?component ?attribute-slot 1))) 
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(define-class ATTRIBUTE-SLOT (?unary-function) 
"An attribute slot is a unary function from components to attribute-values, which are either scalar 
quantities or strings." 
:def (and (unary-function ?unary-function) 
          (domain ?unary-function component) 
          (range ?unary-function attribute-value))) 

(define-relation HAS-SUBPART (?component ?subpart-slot) 
"A component has a subpart if the subpart is given by a unary function, called a subpart-slot, that is 
defined for that component." 
:def (and (component ?component) 
          (subpart-slot ?subpart-slot) 
          (value-cardinality ?component ?subpart-slot 1))) 

(define-class SUBPART-SLOT (?unary-function) 
"A subpart slot is a unary function from components to other components. 
It is antisymmetric and antireflexive." 
:def (and (unary-function ?unary-function) 
          (domain ?unary-function component) 
          (range ?unary-function component) 
          (antisymmetric-relation ?unary-function)) 
          (antireflexive-relation ?unary-function))) 

(define-class VALID-COMPONENT (?component) 
"A component is 'configured' or fully specified if all of its constraints are satisfied and all of its subparts are 
also configured. By definition, there exist values for all the attributes of a component. Whether an agent can 
tell you what the values of attributes are is not part of the definition of configured component. Knowing all the 
constraints associated with a component will require making a closed world assumption on the has-constraint 
slot." 
 
:iff-def (and (component ?component) 
              (=> (has-constraint ?component ?constraint) 
                  (satisfies-constraint ?component ?constraint)) 
              (=> (has-subpart ?component ?part-slot) 
                  (valid-component (value ?part-slot ?component))))) 

(define-relation OPTIMAL-COMPONENT (?comp ?component-class) 
"An optimal-component is the least costly instance of a component class.  To evaluate this relation will require 
making some kind of closed-world assumption over possible components." 
 
:iff-def (and (component ?comp) 
              (component-class ?component-class) 
              (instance-of ?comp ?component-class) 
              (=> (instance-of ?other-component ?component-class) 
                  (=< (component.cost ?comp) 
                      (component.cost ?other-component))))) 
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Appendix 2: Vocabulary defined in the Frame Ontology 

This appendix lists the vocabulary of the Frame Ontology (Version 4). The complete 
axiomatization and documentation is included with the Ontolingua software. 
 
class relation (?relation) 
class function (?function) 
class class (?class) 
relation instance-of (?individual ?class) 
function all-instances (?class) :-> ?set-of-instances 
function one-of (@instances) :-> ?class 
relation subclass-of (?child-class ?parent-class) 
relation superclass-of (?parent-class ?child-class) 
relation subrelation-of (?child-relation ?parent-relation) 
relation direct-instance-of (?individual ?class) 
relation direct-subclass-of (?child-class ?parent-class) 
function arity (?relation) :-> ?n 
function exact-domain (?relation) :-> ?domain-relation 
function exact-range (?relation) :-> ?class 
relation total-on (?relation ?domain-relation) 
relation onto (?relation ?range-class) 
class n-ary-relation (?relation) 
class unary-relation (?relation) 
class binary-relation (?relation) 
class unary-function (?function) 
relation single-valued (?binary-relation) 
function inverse (?binary-relation) :-> ?relation 
function projection (?relation ?column) :-> ?class 
function composition (?relation-1 ?relation-2) :-> ?binary-relation 
relation composition-of (?binary-relation ?list-of-relations) 
function compose (@binary-relations) :-> ?binary-relation 
relation alias (?relation-1 ?relation-2) 
relation domain (?relation ?class) 
relation domain-of (?domain-class ?binary-relation) 
relation range (?relation ?class) 
relation range-of (?class ?relation) 
relation nth-domain (?relation ?integer ?domain-class) 
relation has-value (?domain-instance ?binary-relation ?value) 
function all-values (?domain-instance ?binary-relation) :-> ?set-of-values 
relation value-type (?domain-instance ?binary-relation ?class) 
function value-cardinality (?domain-instance ?binary-relation) :-> ?n 
relation same-values (?domain-instance ?relation-1 ?relation-2) 
relation inherited-slot-value (?domain-class ?binary-relation ?value) 
function all-inherited-slot-values (?domain-class ?binary-relation) :-> ?set-of-values 
relation slot-value-type (?domain-class ?binary-relation ?range-class) 
function slot-cardinality (?domain-class ?binary-relation) :-> ?n 
relation minimum-slot-cardinality (?domain-class ?binary-relation ?n) 
relation maximum-slot-cardinality (?domain-class ?binary-relation ?n) 
relation single-valued-slot (?domain-class ?binary-relation) 
relation same-slot-values (?domain-class ?relation-1 ?relation-2) 
class class-partition (?set-of-classes) 
relation subclass-partition (?c ?class-partition) 
relation exhaustive-subclass-partition (?c ?class-partition) 
relation asymmetric-relation (?binary-relation) 
relation antisymmetric-relation (?binary-relation) 
relation antireflexive-relation (?binary-relation) 
relation irreflexive-relation (?binary-relation) 
relation reflexive-relation (?binary-relation) 
relation symmetric-relation (?binary-relation) 
relation transitive-relation (?binary-relation) 
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relation weak-transitive-relation (?binary-relation) 
relation one-to-one-relation (?binary-relation) 
relation many-to-one-relation (?binary-relation) 
relation one-to-many-relation (?binary-relation) 
relation many-to-many-relation (?binary-relation) 
relation equivalence-relation (?binary-relation) 
relation partial-order-relation (?binary-relation) 
relation total-order-relation (?binary-relation) 
relation documentation (?object ?string) 
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